☑ Regression

Author

Ken Pu

import torch
import matplotlib.pyplot as pl
import numpy as np

1 The data

x = torch.linspace(0, 1, 10)
y_true = 3 * x + torch.sin(6 * x) + 1
pl.plot(x, y_true, '--o');

2 A model

We start with a model that relates \(y\) with the input \(x\).

\[ y = f(x | W) \]

where \(W\) is one or more tunable parameters. In the case of linear regression, we have \(W=[a, b]\) such that

\[ f(x|W) = ax + b \]

Given some weights \(W = (a, b)\), we can assess how well the model fits the true values of \(y\) by computing the error:

\[ \mathrm{err} = \frac{\sum_{i}|y_i - f(x_i|W)|^2}{n} \]

Basically, we have:

\[ \mathrm{err} : W \mapsto \mathbb{R} \]

The error function can help us to improve the model by computing the gradient with respect to \(W\).

\[ W' = W - \epsilon\cdot \nabla\mathrm{err} \]

Theorem

For sufficiently small \(\epsilon\), we are guaranteed to have \(\mathrm{err}(W') < \mathrm{err}(W)\)

3 PyTorch Model

W = torch.tensor([0., 0.], requires_grad=True)
y_pred = W[0]*x + W[1]
err = torch.linalg.vector_norm(y_pred - y_true) / x.shape[0]
err
tensor(0.8162, grad_fn=<DivBackward0>)
err.backward()
grad = W.grad
grad
tensor([-0.1710, -0.3053])

3.1 Update the weights with a step

Let’s update the weights with a small step size:

\[ W_{n+1} = W_{n} - \epsilon\cdot \nabla\mathrm{err} \]

epsilon = 0.01
with torch.no_grad():
    W.sub_(epsilon * grad)
W
tensor([0.0017, 0.0031], requires_grad=True)

Q: Why do we need with torch.no_grad()?

A: By default, any computation that involves \(W\) will trigger a gradient propagation. But \(W \to W-\epsilon\cdot\nabla\mathrm{err}\) is not part of model computation, but rather the optimization computation. So, we have to disable the gradient tracking.

#
# Previous error is 0.8162
#

y_pred = W[0]*x + W[1]
err = torch.linalg.vector_norm(y_pred - y_true) / x.shape[0]
err
tensor(0.8150, grad_fn=<DivBackward0>)

3.2 One more gradient update

W.grad.zero_()

err.backward()
grad = W.grad

with torch.no_grad():
    W.sub_(epsilon * grad)

W
tensor([0.0034, 0.0061], requires_grad=True)

Q: Why do we need W.grad.zero_()?

A: The exact action of err.backward() is to accumulate the gradient to the existing W.grad. So, by default, it will retain the gradient value from the previous update. Since we only care about the gradient from the current error, we need to clear W.grad before err.backward().

#
# Previous error is 0.8150
#

y_pred = W[0]*x + W[1]
err = torch.linalg.vector_norm(y_pred - y_true) / x.shape[0]
err
tensor(0.8138, grad_fn=<DivBackward0>)

4 A training loop

def init(W):
    with torch.no_grad():
        W.zero_()
def err(W):
    y = W[0] * x + W[1]
    return torch.linalg.norm(y - y_true) / x.shape[0]
def update_step():
    W.grad.zero_()
    e = err(W)
    e.backward()
    with torch.no_grad():
        W.sub_(epsilon * W.grad)
    return e.detach().item()
def report(i):
    with torch.no_grad():
        e = err(W)
        print("[{}] a={:.2f} b={:.2f}, err={:.2f}".format(i, W[0], W[1], e))
N = 2000
e = np.zeros(N)
init(W)
for i in range(N):
    e[i] = update_step()
    if i % (N//10) == 0:
        report(i)
report(N)
[0] a=0.00 b=0.00, err=0.81
[200] a=0.34 b=0.61, err=0.57
[400] a=0.67 b=1.19, err=0.35
[600] a=0.96 b=1.66, err=0.20
[800] a=1.12 b=1.87, err=0.16
[1000] a=1.17 b=1.90, err=0.16
[1200] a=1.21 b=1.90, err=0.15
[1400] a=1.23 b=1.88, err=0.15
[1600] a=1.26 b=1.87, err=0.15
[1800] a=1.28 b=1.86, err=0.15
[2000] a=1.30 b=1.85, err=0.15

5 Fitting the data

(a, b) = W.detach().numpy()

y_pred = a * x + b

Q: Why do we need W.detach()?

A: This is another way to avoid triggering gradient computation on W. Basically W.detach() takes a snapshot of W by making a copy of it. The copy will not participate in the gradient computation.

pl.subplot(2,1,1)
pl.plot(x, y_true, '--')
pl.plot(x, y_pred, '-');

pl.subplot(2,1,2)
pl.plot(e);

6 PyTorch API

class LineFitting(torch.nn.Module):
    def __init__(self):
        super().__init__()
        W = torch.tensor([0, 0], dtype=torch.float32)
        self.W = torch.nn.Parameter(W)
        self.length = x
    def forward(self, x):
        return self.W[0] * x + self.W[1]
#
# The model can be used as a function to evaluate the forward computation
#

line = LineFitting()
line(x)
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], grad_fn=<AddBackward0>)
def train(x, y_true, model, LossFn, OptimizerFn, lr, epochs):
    loss = LossFn()
    optimizer = OptimizerFn(model.parameters(), lr=lr)
    for epoch in range(epochs):
        optimizer.zero_grad()
        y = model(x)
        loss(y, y_true).backward()
        optimizer.step()
        if epoch % (epochs//10) == 0:
            with torch.no_grad():
                l = loss(y, y_true).numpy()
                W = next(model.parameters()).numpy()
                print(l, W)
train(x, y_true, line, torch.nn.MSELoss, torch.optim.SGD, 0.1, 10)
6.661948 [0.27913672 0.49835616]
3.8140697 [0.48879483 0.8691274 ]
2.2304645 [0.6466221 1.1447786]
1.3497871 [0.76577795 1.3495169 ]
0.8599378 [0.85607487 1.5013919 ]
0.58739096 [0.9248301 1.6138622]
0.4356683 [0.97749996 1.6969628 ]
0.35112858 [1.0181533 1.7581764]
0.30394772 [1.0498246 1.803082 ]
0.27754354 [1.0747765 1.8358393]
def plot(x, y_true, model):
    with torch.no_grad():
        y = model(x)
        pl.plot(x, y_true, '--o')
        pl.plot(x, y, '-');
plot(x, y_true, line)

7 Fitting using power series

Let’s consider the following model:

\[ y_i = \sum_{k=0}^n w_k\cdot x_i^k \]

class PolyFit(torch.nn.Module):
    def __init__(self, degree):
        super().__init__()
        self.degree = degree
        self.W = torch.nn.Parameter(torch.zeros(degree))
        
    def forward(self, x):
        y = torch.zeros_like(x)
        for i in range(self.degree):
            y += self.W[i] * (x ** i)
        return y
poly = PolyFit(5)
train(x, y_true, poly, torch.nn.MSELoss, torch.optim.SGD, 0.05, 100_000)
6.661948 [0.24917808 0.13956836 0.10177316 0.08296516 0.07186685]
0.096582726 [ 1.5249301  4.626327  -5.4320383 -1.7490873  4.497506 ]
0.0407205 [ 1.3294919  6.8686876 -9.060711  -2.8561032  7.314907 ]
0.019431062 [  1.2087605   8.256573  -11.31992    -3.5080438   9.038196 ]
0.011308028 [  1.1341342   9.117172  -12.734032   -3.8792846  10.086427 ]
0.008199797 [  1.087948    9.652406  -13.626566   -4.0774508  10.718156 ]
0.007001873 [  1.0593315   9.986803  -14.197132   -4.1690907  11.093055 ]
0.006531924 [  1.0415397  10.197327  -14.569023   -4.194967   11.309404 ]
0.0063396967 [  1.0304453  10.331186  -14.817809   -4.180671   11.428036 ]
0.0062534497 [  1.0234796  10.417755  -14.990616   -4.1417074  11.486474 ]
plot(x, y_true, poly);